Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22318, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102201

RESUMO

A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.

2.
J Org Chem ; 88(24): 16997-17009, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031391

RESUMO

Here, commercially available Co2(CO)8 was utilized as an efficient catalyst for chemodivergent synthesis of pyrrolidines and pyrrolidones from levulinic acid and aromatic amines under slightly different hydrosilylation conditions. 1.5 and 3 equiv of phenylsilane selectively yielded pyrrolidone and pyrrolidine, respectively. Various ketoacids and amines were successfully tested. Plausible mechanism involves the condensation of levulinic acid and amine to form an imine, which cyclizes to 3-pyrrolidin-2-one followed by reduction to pyrrolidone. The final reduction of pyrrolidone gave pyrrolidine.

4.
J Org Chem ; 88(13): 8133-8149, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37317486

RESUMO

In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable ß-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (ß-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.


Assuntos
Alcinos , Manganês , Alcinos/química , Estrutura Molecular , Manganês/química , Cristalografia por Raios X , Ligantes , Catálise
5.
J Org Chem ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595479

RESUMO

Nickel(II) complex 1 was utilized as a sustainable catalyst for α-alkylation of arylacetonitriles with challenging secondary alcohols. Arylacetonitriles with a wide range of functional groups were tolerated, and various cyclic and acyclic secondary alcohols were utilized to yield a large number of α-alkylated products. The plausible mechanism involves the base-promoted activation of precatalyst 1 to an active catalyst 2 (dehydrochlorinated product) which activates the O-H and C-H bonds of the secondary alcohol in a dehydrogenative pathway.

6.
J Org Chem ; 85(23): 15610-15621, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197191

RESUMO

A well-defined and readily available air-stable dimeric iridium(III) complex catalyzed α-alkylation of arylacetonitriles using secondary alcohols with the liberation of water as the only byproduct is reported. The α-alkylations were efficiently performed at 120 °C under solvent-free conditions with very low (0.1-0.01 mol %) catalyst loading. Various secondary alcohols including cyclic and acyclic alcohols and a wide variety of arylacetonitriles bearing different functional groups were converted into the corresponding α-alkylated products in good yields. Mechanistic study revealed that the reaction proceeds via alcohol activation by metal-ligand cooperation with the formation of reactive iridium-hydride species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...